Three New Illudalane Sequiterpenoids from Pteris semipinnata

by Zha-Jun Zhan^a), You-Min Ying^a), Fu-Yu Zhang^a), Cheng-Ping Li^b), and Wei-Guang Shan^{*a})

^a) College of Pharmaceutical Science, Zhejiang University of Technology, Hangzhou 310014, P. R. China (phone: +86-571-88871075; e-mail: tianranyaowu@zjut.edu.cn)

^b) College of Biology and Environment Engineering, Zhejiang Shuren University, Hangzhou 310015, P. R. China

The chemical investigation of the aerial parts of *Pteris semipinnata* resulted in the isolation of three illudalane sesquiterpenoids, namely (2R)-norpterosin B (1), (2R)-12-O- β -D-glucopyranosylnorpterosin B (2), and semipterosin A (3), along with three known compounds. The structures of 1-3 were established by spectroscopic methods, including extensive 2D-NMR and CD analyses.

Introduction. – The C₁₄ and C₁₅ illudalane sesquiterpenoids, known as pterosins, and *ent*-kaurane diterpenoids represent the chemotaxonomical constituents of the genus *Pteris* [1–5]. *Pteris semipinnata* L. (Pteridaceae) is a plant widely distributed in China, and the whole plant has been used in traditional Chinese medicine (TCM) to treat toothache, diarrhea, jaundice, and viper bites [6]. A series of *ent*-kaurane diterpenoids and pterosins with antitumor bioactivity from this plant has been reported [7–12]. In the continuing search for biologically active compounds from Chinese medicinal plants, the three illudalane sesquiterpenoids $1-3^{1}$) were isolated from the aerial parts of *Pteris semipinnata* as well as three known compounds, *i.e.*, pterosin C 3-*O*- β -D-glucoside (= 3-*O*- β -D-glucopyranosylpterosine C; **4**), paniculoside III (**5**), and phillyrin (**6**). Their structures were established by mass-spectrometric and spectroscopic analyses, especially through 2D-NMR techniques (HMQC, HMBC, and NOESY).

Results and Discussion. – (2*R*)-Norpterosin B (1), with the molecular formula $C_{13}H_{16}O_2$ determined by HR-EI-MS, was obtained as amorphous powder. C=O and OH Groups (1701 and 3205 cm⁻¹, resp.) were indicated in the IR spectrum. Thirteen C-atom signals in the ¹³C-NMR spectrum (*Table*) were assigned by a DEPT experiment to three Me, two CH₂, and two CH groups, and six sp² quaternary C-atoms. The ¹H-NMR spectrum (*Table*) displayed three Me signals at $\delta(H)$ 2.70 (*s*), 2.50 (*s*), and 1.23 (*d*, *J* = 7.3 Hz), and an O-atom-bearing CH₂ at $\delta(H)$ 4.72 (*s*). A typical signal at $\delta(H)$ 7.16 (*s*) was also observed in the ¹H-NMR spectrum, which was assignable to the H-atom of a pentasubstituted phenyl ring. The above-mentioned evidence and the six degrees of unsaturation suggested that compound **1** is a dinorsesquiterpenoid with an indan-1-one skeleton [4]. Comparison of the ¹H- and ¹³C-NMR spectroscopic data (*Table*) of **1** with those of pterosin B (=(2*R*)-2,3-dihydro-6-(2-hydroxyethyl)-2,5,7-trimethyl-1*H*-inden-1-one) showed that the only structural difference was one less CH₂ group in **1** than in

¹⁾ Trivial atom numbering; for systematic names, see Exper. Part.

^{© 2010} Verlag Helvetica Chimica Acta AG, Zürich

pterosin B [13], and this was supported by its molecular composition. Thus, the structure of **1** was identified as norpterosin B, which was confirmed by the interpretation of 2D-NMR data. In the NOESY plot, the signal at $\delta(H)$ 4.72 (CH₂(12)) showed correlations with Me(11) and Me(13), which was indicative of the presence of a CH₂OH group at C(6). The absolute configuration of **1** was determined from its CD spectrum which showed a positive *Cotton* effect at 315 nm in MeOH, indicating that the absolute configuration at C(2) is (*R*). Accordingly, compound **1** was assigned as (2*R*)-norpterosin B.

Compound **2** showed the molecular formula $C_{19}H_{26}O_7$ as deduced by the HR-ESI-MS (m/z 389.1565 ([M + Na]⁺)). The presence of a β -D-glucopyranosyl moiety was inferred from the ¹H- and ¹³C-NMR data (*Table*). Except for the sugar part, the NMR data of the aglycone **2** were very similar to those of **1**. The downfield C-atom signal for C(12) (δ (C) 64.9) compared with that of **1** showed that the sugar moiety was linked to C(12), which was confirmed by the correlation between the H-atom signal at δ (H) 4.30 and C(12) in the HMBC spectrum. From these results and 2D-NMR experiments (HMQC, HMBC, and NOESY), the structure of **2** was elucidated as 12-*O*- β -Dglucopyranosylnorpterosin B, and the absolute configuration at C(2) was also (*R*) as deduced from its CD spectrum.

Semipterosin A (3) was obtained as amorphous powder. The molecular formula of 3 was determined as $C_{14}H_{20}O_4$ by HR-ESI-MS, which provided a quasi-molecular-ion peak at m/z 253.1434 ($[M + H]^+$), in conjunction with its ¹³C-NMR spectrum displaying 14 resonances. The IR spectrum showed absorption bands of OH (3312 cm⁻¹) and phenyl (1607 cm⁻¹) functionalities. The ¹H-NMR data (*Table*) indicated the presence of two Me signals at $\delta(H)$ 2.42 (s) and 0.96 (d, J = 7.2 Hz), two O-atom-bearing CH₂ groups at $\delta(H)$ 4.66 (s) and 3.67 (t, J = 7.5 Hz), and two O–CH units at $\delta(H)$ 5.22 (d, J = 6.2 Hz) and 4.90 (d, J = 3.7 Hz). A diagnostic H-atom at $\delta(H)$ 7.27 (s) attributed to an isolated phenyl H-atom was also observed in the ¹H-NMR spectrum. A DEPT NMR experiment permitted the differentiation of the 14 resonances into two Me, three CH₂, and four CH groups, and five quaternary C-atoms. The data mentioned above were

	1		2		3	
	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$	$\delta(H)$	$\delta(C)$
C(1) or	-	212.5	-	212.4	4.90 (d, J = 3.7)	79.6
CH(1)						
H-C(2)	2.61 - 2.63 (m)	43.8	2.62 - 2.63(m)	43.8	2.37 - 2.39(m)	49.1
$CH_2(3)$ or	3.26 - 3.28(m),	34.8	3.32 - 3.34(m),	34.8	5.22 (d, J = 6.2)	74.6
CH(3)	2.57 - 2.58(m)		2.57 - 2.59(m)			
CH(4)	7.16 (s)	126.9	7.17 (s)	126.8	7.27(s)	122.5
C(5)	-	144.9	-	147.9	-	134.6
C(6)	-	139.6	-	135.0	-	140.3
C(7)	-	138.1	_	140.8	-	135.2
C(8)	-	132.8	_	132.7	-	141.4
C(9)	-	155.8	_	156.3	-	142.5
Me(10)	1.23 (d, J = 7.3)	16.8	1.24 (d, J = 7.5)	16.8	0.96 (d, J = 7.2)	10.9
Me(11) or	2.50(s)	20.7	2.53(s)	20.7	4.66 (s)	62.6
CH ₂ (11)						
$CH_{2}(12)$	4.72(s)	57.9	5.06 (d, J = 11.5),	64.9	3.02(t, J=7.5)	31.5
2()			4.80(d, J = 11.5)			
Me(13)	2.70(s)	13.5	2.73(s)	13.5	2.42(s)	13.6
$CH_{2}(14)$					3.67(t, J = 7.5)	60.9
Glc:						
CH(1)			4.30 (d, J = 7.5)	103.2		
CH(2)			3.19(t, J = 8.0)	75.0		
CH(3)			3.32 - 3.34(m)	78.0		
CH(4)			3.31 - 3.32 (m)	71.6		
CH(5)			3.32 - 3.34 (m)	78.0		
$CH_{1}(6)$			3.93 (dd I = 12.5, 2.0)	62.8		
212(0)			3.73 (dd, J = 12.5, 5.5)	02.0		
			3.73 (<i>dd</i> , <i>J</i> = 12.5, 5.5)			

Table. ¹H- and ¹³C-NMR Data (CD₃OD, 500 and 125 MHz, resp.) of 1-3. δ in ppm, J in Hz.

similar to those of pterosin T (=(2*S*,3*S*)-2,3-dihydro-3-hydroxy-6-(2-hydroxyethyl)-5-(hydroxymethyl)-2,7-dimethyl-1*H*-inden-1-one) [13]. The difference in the 1D-NMR spectra of **3** was that the C(1)=O group of pterosin T was replaced by an O-atombearing CH group, which was confirmed by the interpretation of the 2D-NMR spectra (*Fig.*). In the HMBC spectrum, the correlation $CH_2(11)/C(5)$ and $CH_2(11)/C(4)$ established the presence of a CH₂OH group at C(5), which was confirmed by the key NOESY correlation $CH_2(11)/H-C(4)$. The relative configuration of **3** was deduced from the NOESY plot. The correlation H-C(1)/Me(10) showed that H-C(1) and Me(10) are on the same side of the molecule. As a consequence, H-C(2) is on the

Figure. Key HMBC (H \rightarrow C) and NOESY (H \leftrightarrow H) correlations of **3**

other side. The cross-peak H-C(2)/H-C(3) suggested that the OH at C(3) was on the β -face. Based on these data, the structure of **3** was identified, with the absolute configuration not being determined, and named semipterosin A.

The structures of three known compounds also isolated from the title plant were identified as pterosin C 3-O- β -D-glucoside (4) [14], paniculoside III (5) [15], and phillyrin (6) [16] by comparison of their spectroscopic data with literature values.

Experimental Part

General. All solvents used were of anal. grade (Shanghai Chemical Plant). Thin-layer chromatography (TLC): precoated silica gel GF_{254} plates (SiO₂; Qingdao Haiyang Chemical Plant). Column chromatography (CC): SiO₂ (230–400 mesh), SiO₂ H-60, C_{18} reversed-phase SiO₂ (150–200 mesh, Merck), and MCI-CHP-20P gel (75–150 µm; Mitsubishi Chemical Industries Ltd.). Optical rotations: Perkin-Elmer-341 polarimeter. UV Spectra: Shimadzu-UV-2450 spectrometer; λ_{max} (log ε) in nm. CD Spectra: Jasco J-815; λ ([θ]) in nm. IR Spectra: Thermo-Nicolet-6700 spectrophotometer; $\tilde{\nu}$ in cm⁻¹. NMR Spectra: Bruker-AM-500 apparatus; δ in ppm rel. to Me₄Si as internal standard, J in Hz. MS: Agilent-6210 Lc/Tof mass spectrometer; in m/z (rel. %).

Plant Material. The plant material used for this study was collected from the Guiling area in Guangxi Province of P. R. China and identified by Prof. *Hai-Bo Bai* of the College of City, Zhejiang University, P. R. China. A voucher specimen (No. ZJUT 08550P) was deposited with the Zhejiang University of Technology.

Extraction and Isolation. The air-dried and powdered aerial parts of *P. semipinnata* (6.8 kg) were extracted with 95% EtOH at r.t. After evaporation of the solvent *in vacuo*, the residue was dissolved in H₂O (31) and then extracted successively with AcOEt (5×500 ml) and BuOH (5×500 ml). The BuOH extract (88.0 g) was subjected to CC (*MCI-CHP-20P* gel, MeOH/H₂O 0:10 \rightarrow 5:5) *Fractions* 1–3. *Fr.* 1 (13.5 g) was applied to CC (*RP-18* SiO₂, MeOH/H₂O 3:7 \rightarrow 5:5): **3** (35 mg), **5** (12 mg), and **6** (37 mg). *Fr.* 2 (8.1 g) was subjected to CC (SiO₂, CHCl₃/MeOH 15:1): **2** (160 mg) and **4** (45 mg). *Fr.* 3 (4.0 g) was separated by CC (C_{18} column, MeOH/H₂O 4:6 \rightarrow 5:5): **1** (39 mg).

(2R)-Norpterosin B (=(2R)-2,3-Dihydro-6-(hydroxymethyl)-2,5,7-trimethyl-1H-inden-1-one; **1**): White amorphous powder. $[a]_{D}^{20} = -16.0 \ (c = 0.4, \text{ MeOH})$. UV (MeOH): 219 (4.52), 258 (4.15), 297 (3.33). CD (MeOH): 315.0 (+1.74 \cdot 10^3). IR (KBr): 3205 (OH), 1701 (C=O), 1601, 1511, 1384, 1246, 1123, 1083, 1036. ¹H- and ¹³C-NMR: *Table*. EI-MS: 204 (81), 189 (100, $[M - CH_3]^+$), 186 (90, $[M - H_2O]^+$), 171 (43, $[M - H_2O - CH_3]^+$), 157 (10), 143 (28), 128 (32), 115 (29), 105 (13), 91 (15), 77 (12). HR-EI-MS: 204.1148 (M^+ , $C_{13}H_{16}O_2^+$; calc. 204.1150).

(2R)-12-O-β-D-Glucopyranosylnorpterosin B (=(2R)-6-[(β-D-Glucopyranosyloxy)methyl]-2,3-dihydro-2,5,7-trimethyl-1H-inden-1-one; **2**): White amorphous powder. $[a]_{20}^{20} = +16.0$ (c = 0.2, MeOH). UV (MeOH): 218 (4.32), 258 (3.90), 302 (3.06). CD (MeOH): 307.0 (+1.35 \cdot 10^3). IR (KBr) 3432, 2924, 2874, 1702, 1600, 1441, 1422, 1381, 1078, 1025, 887, 636, 517. ¹H- and ¹³C-NMR: *Table*. ESI-MS (pos.): 389 ($[M + Na]^+$). HR-ESI-MS: 389.1565 ($[M + Na]^+$, C₁₉H₂₆NaO₇⁺; calc. 389.1576).

Semipterosin A (= rel-(1R,2S,3R)-2,3-Dihydro-5-(2-hydroxymethyl)-6-(hydroxymethyl)-2,4-dimethyl-1H-indene-1,3-diol; **3**): White amorphous powder. $[a]_D^{20} = -142.0 (c = 0.1, MeOH)$. UV (MeOH): 244 (2.48). IR (KBr): 3312, 2883, 1607, 1413, 1015, 879. ¹H- and ¹³C-NMR: *Table*. ESI-MS (pos.): 253 ($[M + H]^+$). HR-ESI-MS: 253.1434 ($[M + H]^+$, C₁₄H₂₁O₄⁴; calc. 253.1440).

REFERENCES

- [1] X. Ge, G. Ye, P. Li, W.-J. Tang, J.-L. Gao, W.-M. Zhao, J. Nat. Prod. 2008, 71, 227.
- [2] L. Harinantenaina, K. Matsunami, H. Otsuka, J. Nat. Med. 2008, 62, 452.
- [3] X. L. Gong, Z. H. Chen, N. C. Liang, Zhongguo Zhongyao Zazhi 2007, 32, 1382.
- [4] B. Qing, D. Y. Zhu, Huaxue Yanjiu 2004, 15, 72.
- [5] T. Murakami, Y. Saiki, Biochem. Syst. Ecol. 1988, 17, 131.

- [6] Jiangsu New Medical College, 'Dictionary of Chinese Herb Medicine', Shanghai Scientific and Technologic Press, Shanghai, 1986, p. 782.
- [7] Z.-J. Zhan, F.-Y. Zhang, C.-P. Li. W.-G. Shan, J. Chem. Res. 2009, 149.
- [8] Q. Zhang, L. J. Xuan, Chin. Chem. Lett. 2007, 18, 1386.
- [9] K. Aoyama, N. Tanaka, N. Suzuki, T. Murakami, Y. Saiki, C.-M. Chen, *Chem. Pharm. Bull.* 1977, 25, 2461.
- [10] J. H. Li, N. C. Liang, L. E. Mo, X. Zhang, C. W. He, Acta. Pharm. Sin. 1998, 33, 641.
- [11] Z. Liu, E. K. W. Ng, N.-C. Liang, Y.-F. Deng, B. C. S. Leung, G. G. Chen, FEBS Lett. 2005, 579, 1477.
- [12] C. W. He, N. C. Liang, L. E. Mo, J. H. Li, X. Zhang, *China J. Cancer Prev. Treat.* 2002, *9*, 348.
 [13] N. Tanaka, T. Satake, A. Takahashi, M. Mochizuki, T. Murakami, Y. Saiki, J.-Z. Yang, C.-H. Chen, *Chem. Pharm. Bull.* 1982, *30*, 3640.
- [14] T. Murakami, T. Satake, C. M. Chen, Yakugaku Zasshi 1985, 105, 640.
- [15] K. Yamasaki, H. Kohda, T. Kobayashi, R. Kasai, O. Tanaka, Tetrahedron Lett. 1976, 17, 1005.
- [16] S.-Q. Luo, L.-Z. Lin, G. A. Cordell, Phytochemistry 1993, 33, 193.

Received July 27, 2009